01_Rozdziat 02 -
Podstawy Python Pycharm

») Rozdziat 2 - Podstawy Pythona z
Pycharm - co kazdy powinien
wiedzieC

Rozdziat ten wprowadza czytelnika w Swiat
programowania w jezyku Python z
wykorzystaniem popularnego srodowiska
PyCharm. Przedstawie podstawowe
elementy sktadni Pythona, ale bez
zagtebiania sie w niuanse jezyka. Dosy¢
doktadnie opisze mechanizm virtualenv I
uruchamianie skryptéw. Omowie takze
zasady pracy z edytorem PyCharm, w tym
korzystanie z narzedzi utatwiajacych
pisanie kodu. Dzieki temu rozdziatowi kazdy
poczatkujacy programista zdobedzie
solidne fundamenty do dalszej nauki i
praktycznego wykorzystania Pythona i
PyCharm. Ten rozdziat rowniez bedzie
opisywat system Windows 10 oraz Linux
Kubuntu 24.04 - na przyktadzie programu

Python przetestuje predkosc¢ i wydajnosc¢
obu systemoéw operacyjnych.

Wiemy juz, czym jest jezyk Python, jak i kiedy mozemy z
niego korzystac. Przynajmniej w teorii, bo w praktyce - no
wtasnie.... Czasami rozne samouczki mowig o Python IDLE,
inne o PyCharm, jeszcze inne o jakis dziwnych environment
(srodowiskach). A wiec... jak to wlasciwie jest? Sprobujmy
sobie to pouktadac w pewnej kolejnosci, zaczynajac od :

Python - jezyk programowania, sktadnia, dodatkowe
moduty (biblioteki), z ktérych mozemy korzystac dopiero
po ich zainstalowaniu

Python IDLE - (ang. Integrated Development and
Learning Environment) to proste, graficzne zintegrowane
Srodowisko programistyczne (IDE) do pracy z jezykiem
Python, ktore jest standardowo dotgczane do instalacii
oficjalnej wersji Pythona (CPython); zapewnia
interaktywng konsole, w ktérej mozna natychmiastowo
uruchamiac polecenia i fragmenty kodu, oraz pozwala na
edycje, zapisywanie i uruchamianie plikéw ze skryptami -
polecam dla poczatkujgcych, by tatwo zaczgc¢ pisanie
kodu

virtualenv - jeden ze sposobow (jest ich kilka, ale my
skupimy sie na tym jednym) na tworzenie odizolowanych
Srodowisk Pythona, ktore umozliwiajg niezalezne
zarzadzanie bibliotekami i interpreterem dla kazdego
projektu, bez wptywu na globalng instalacje Pythona i

pakietOw w systemie; zawiera interpreter oraz zestaw
bibliotek, dzieki czemu instalowane w nim pakiety nie
wplywaja na inne projekty, ktore moga posiadac witasne,
niezalezne virtualenv

PyCharm - jedno z najbardziej zaawansowanych i
popularnych zintegrowanych srodowisk
programistycznych (IDE od ang. integrated development
environment) przeznaczonych do pracy z jezykiem
Python, ktore znaczaco utatwia i przyspiesza prace nad
projektami w Pythonie - opracowane przez firme
JetBrains; dziata w Windows, macOS i Linux.

Zatem - bedziemy tworzycC aplikacje w jezyku Python,
wykorzystamy mechanizm virtualenv, a kod bedziemy
pisa¢ w edytorze PyCharm . Zapamietajmy to zdanie - jesli je
dobrze zrozumiemy, nie bedziemy miec problemow w stylu:
'w Pycharm dziata, ale poza nim nie' lub 'w komputerze X
dziata, ale w Y juz nie chce' - stosunkowo czesto widze takie
pytania wsrod poczatkujacych osob, dla ktorych PyCharm to
Python lub odwrotnie, i chce tutaj doktadnie wyjasnic, co jest
czym, a co czym nie jest.

Dla celow testowych wykorzystamy prosty kod w Python -
mozemy pobrac go z serwisu GitHub:

import sys

print("To jest pierwszy program w Python.")
print(f"I pierwsza informacja z modutu:
{sys.implementation}")

https://github.com/Adam-Jurkiewicz-Pythonista/python-helion-
2025-tmp/blob/main/Rozdzia%C5%82_ 02/01 _info.py
(gr kod)

Nie musze chyba przypominac¢ o zapisaniu pliku. Dla potrzeb
poczatkowych rozdziatbw mamy katalog o nazwie skrypt -
tam utworzymy plik o nazwie 01 info.py Iuruchomimy, na
poczatku w systemie Windows, potem w systemie Linux.
Tworzymy plik w eksploratorze, edytujemy w prostym
edytorze tekstowym lub kopiujemy i wklejamy z GiHub'a. To
tylko 3 wiersze kodu, wiec nie potrzebujemy tu zadnych
zaawansowanych narzedzi. Na koniec uruchamiamy program
za pomocg Pythona w konsoli, terminalu, cmd (Command
line) - tu sg rozne nazwy, ale zobaczmy - w obu systemach
wyglada to podobnie! Tak, tak - takie proste skrypty beda
dziataty prawie identycznie.

W systemie Windows

imrpor't.sysr
print("To pierwszy program w Python")
print(f"I pierwsza informacja z modutu: {sys.implementation}")

& Wiersz polecenia
Microsoft Windows [Version 10.0.19045.2965]
(c) Microsoft Corporation. Wszelkie prawa zastrzezone.

C:\Users\python>cd skrypt

C:\Users\python\skrypt>python 01_info.py

To pierwszy program w Python

I pierwsza informacja z modulu: namespace(name='cpython', cache_tag="cpython-312', version=sys.
version_info(major=3, minor=12, micro=3, releaselevel=‘final', serial=0), hexversion=51119088)

C:\Users\python\skrypt>

My e m a @ g ~BED arns B

Wynik w postaci tekstu to:

$ python 01 info.py

To pierwszy program w Python

I pierwsza informacja z modutu:
namespace(name='cpython', cache tag='cpython-
312", version=sys.version info(major=3, minor=12,
micro=3, releaselevel='final', serial=0),
hexversion=51119088)

W systemie Linux

" limport sys
print("To pierwszy program w Python.")
print(f"I pierwsza informacja z modutu: {sys.implementation}")

s saypt + bash — Konsola v A X
Wiyczl

o weae ofPython@linux:~$ cd skrypt/

python@linux:~/skrypt$ python 01_1info.py

To pilerwszy program w Python.

I pierwsza informacja z modutu: namespace(name='cpython', cache_tag='cpython-312"',
version=sys.version_info(major=3, minor=12, micro=3, releaselevel='final', serial=0
), hexversion=51119088, _multiarch="'x86_64-1inux-gnu')

python@linux:~/skrypt$ JJ

Wynik w postaci tekstu to:

$ python 01 info.py

To pierwszy program w Python.

I pierwsza informacja z modutu:
namespace(name='cpython', cache tag='cpython-
312", version=sys.version info(major=3, minor=12,
micro=3, releaselevel='final', serial=0),
hexversion=51119088, multiarch='x86 64-1linux-

gnu')

Specjalnie chce, abySmy na poczatku zrobili to w ten sposob
- nikt oczywiscie w realnych projektach tak nie robi. Chce,
abysmy zobaczyli, ze pewne elementy po prostu dziatajg od
razu i nie wymagajg specjalnych zabiegow. Po prostu plik,
kilka linijek kodu, Python - i juz. Mozemy zauwazyc¢, ze
hexversion w obu przypadkach jest identyczne - zatem w
naszych przyktadach w obu systemach mamy identyczny
interpreter - wiec wszystko powinno dziatac identycznie. Czy
tak bedzie? Czas pokaze... chocC juz teraz zapowiem, ze nie -
rozne systemy operacyjne dajg rozne efekty dziatania.

Mam nadzieje, ze proste i czytelne. Sprobujmy samodzielnie
- powinno sie udac.

W nastepnym kroku chce, abysmy wyobrazili sobie, ze w
pracy programistki i programisci na swoich komputerach
pracujg nad roznymi projektami, ktére wymagaja réznych
Srodowisk. My ograniczymy naszag opowiesS¢ do jezyka
Python - to nieco uprosci sytuacje. Ot6z poza samym
jezykiem w calym ekosystemie Python'a istniejg rowniez
biblioteki, zwane modutami (by¢ moze bede uzywat tych
nazw zamiennie). W tym przyktadowym kodzie uzyliSmy
polecenia import sys, ktore dziata, gdyz biblioteka sys
jest dystrybuowana wraz z podstawowsg instalacjg Pythona.
Lecz istnieja biblioteki, ktérych w niej nie ma i musimy sobie
je zainstalowac. Powiemy - c6z w tym trudnego? Przeciez
niejednokrotnie w pracy z komputerem potrzebowalismy
jakiegos programu, po prostu go doinstalowaliSmy i juz, po
kiopocie. A gdyby zaszta koniecznosSc posiadania tego
samego programu, ale w roznych wersjach - do réznych

projektow? To juz bytoby trudniejsze do ogarniecia, np 10
roznych wersji tego samego pakietu Libre Office?

W Pythonie przychodzi nam z pomocg mechanizm nazywany
virtualenv - tworzy on osobny katalog na dysku, w ktorym
znajduje sie wiasna kopia interpretera Pythona oraz zestaw
bibliotek. Dzieki temu kazdy projekt moze mie¢ swoj unikalny
zestaw pakietow i wers;ji bibliotek, bez ryzyka konfliktow z
iInnymi projektami lub z pakietami zainstalowanymi globalnie.
Jest szczegolnie przydatny, gdy:

Pracujemy nad kilkoma projektami wymagajgcymi
roznych wersji bibliotek.

Chcemy uniknaC konfliktow miedzy zaleznoSciami
roznych aplikacji.

Nie mamy uprawnien do instalacji pakietow globalnie, np.
na wspotdzielonym serwerze Linux (gdzie w 99,5%
przypadkow bedziemy instalowaé nasze projekty).
Wiecej informac;ji teoretycznych :
https://docs.python.org/pl/3.12/tutorial/venv.html

A jak wyglada to w praktyce? Musimy kazdorazowo dla
nowego projektu utworzy¢ srodowisko - tworzymy katalog dla
projektu, a w nim wykonujemy polecenie:

python -m venv virtual env directory name - 0NnoO
tworzy nowe, odizolowane Ssrodowisko wirtualne Pythona w
katalogu o nazwie virtual env directory name . Oznacza
to, ze w tym katalogu zostang utworzone wszystkie pliki i
foldery niezbedne do dziatania niezaleznego srodowiska
Pythona.

Jeszcze raz doktadnie opiszemy polecenie python -m venv
virtual env directory name:

python -m venv uruchamia modut venv , ktory jest
wbudowany w Pythona od wersji 3.3.

virtual env directory name to nazwa (lub Sciezka)
katalogu, w ktorym zostanie utworzone Srodowisko.
Podajemy dowolng nazwe lub Sciezke.

Po wykonaniu polecenia powstaje nowa struktura
katalogow z podkatalogami

(m.in. bin lub Scripts, lib), ktére zawierajg
wszystko, co potrzebne do pracy z Pythonem.

Sprébujmy to zrobic.

Windows

Krok 1. Tworzymy katalog lub przechodzimy do istniejgcego,
np: cd skrypt

Krok 2. Uruchamiamy CMD, a w nowo utworzonym katalogu
(oczywiscie musimy w nim bycC) wykonujemy polecenie
python -m venv virtual env

Krok 3. Aktywujemy nasze srodowisko poleceniem:
virtual env\Scripts\activate.bat

Efekt bedzie podobny do tego: (virtual env)
C:\Users\python\skrypt>

Identyczny tylko jesli zachowasz nazwe uzytkownika w
systemie i katalogi.

T —
C:\Users\python>cd skrypt
C:\Users\python\skrypt>python -m venv virtual_env

C:\Users\python\skrypt>virtual_env\Scripts\activate.bat

(virtual_env) C:\Users\python\skrypt>

Linux

Krok 1. Tworzymy katalog lub przechodzimy do istniejgcego,
np: cd skrypt

Krok 2. Uruchamiamy konsole, a w nowo utworzonym
katalogu (oczywiscie musimy w nim byc¢) wykonujemy
polecenie python -m venv virtual env

Krok 3. Aktywujemy nasze srodowisko poleceniem: source
virtual env/bin/actiavate

Efekt bedzie podobny do tego: (virtual env)
python@linux:~/skrypt$

ldentyczny tylko jesli zachowasz nazwe komputera,
uzytkownika w systemie i katalogi.

L 1j
3
3
|

9
g
=
]

[} skrypt : bash — Konsola
WG

python@linux:~$ cd skrypt

python@linux:~/skrypt$

python@linux:~/skrypt$ python -m venv virtual_env

python@linux:~/skrypt$

python@linux:~/skrypt$ source virtual_env/bin/activate

(virtual_env) python@linux:~/skrypt$ H iy

(virtual_env) python@linux:~/skrypt$ [el [
@

FakeoOe 2 A
nozgozrgh |
EEg:2F6

Zauwazmy - znowu bardzo podobnie. Najwazniejsze jest to,

co widzimy w wierszu polecen: (virtual env) ... Taki
zapis mowi nam, ze Python bedzie uruchomiony z naszego
wirtualnego srodowiska, a wszystkie biblioteki, ktére sg
zainstalowane w nim, beda uzywane w nim, a nie poza.

Teraz nauczymy sie, jak korzystac z takiego rozwigzania,
wykorzystamy kod z mojej poprzedniej ksigzki, dostepny pod
adresem https://github.com/Adam-Jurkiewicz-
Pythonista/python-linux-

windows/blob/main/test_wydajnosci.py

Uruchomimy go najpierw bez wirtualnego srodowiska, a
nastepnie majac je aktywowane oraz - co wazne, posiadajgc
niezbedne biblioteki zainstalowane wewnatrz tego
wirtualnego srodowiska. Oczywiscie musimy go zapisac w
naszym katalogu skrypt .

Windows

“Microsoft Windows [Version 10.0.19045.2965]
(virtual_env) C:\Users\python\skrypt>pip list (c) Microsoft Corporation. Wszelkie prawa zastrzezone.
Package Version
—————————————————————————— C:\Users\python>cd skrypt
contourpy 1.3.3
cycler 0.12.1 C:\Users\python\skrypt>python test_wydajnosci.py
fonttools 4.59.0 dla windows:
kiwisolver 1.4.8 pip install matplotlib
matplotlib 3.10.5 pip install msvc-runtime
msvc_runtime 14.42.34433
numpy 203022 C:\Users\python\skrypt>pip list
packaging 25.0 Package Version
pillow 11.3.¢ feeeeee e
pip 24.0 pip 24.0
pyparsing Jo2o3
python-dateutil 2.9.0.posto
six 1.17.0

C:\Users\python\skrypt>

(virtual_env) C:\Users\python\skrypt>

=0 sk NTEN - ABEDO o B

Zobaczmy zrzut ekranu - mamy tu dwa okna. W lewym
aktywne wirtualne srodowisko (jego nazwa jest w nawiasach
przed zgtoszeniem systemowych $PROMPT), w prawym
oknie jesteSmy w tym samym katalogu, ale nie mamy
aktywnego wirtualnego srodowiska. Uruchamiamy w nim
nasz skrypt i widzimy informacje o dwoch bibliotekach, ktore
sg niezbedne dla dziatania programu. Poniewaz nie mamy
ich zainstalowanych w systemie, polecenie pip list
niewiele nam pokaze. Natomiast w lewym oknie widzimy juz
zainstalowane biblioteki.

Linux

[} skrypt : bash — Konsola

Wiyczki

Plik Edycja Widok Zakadki Ustawienia Pomoc
(virtual_env) python@linux:~/skrypt$ pip list

Package Version
contourpy
cycler
fonttools
kiwisolver
matplotlib
numpy
packaging
pillow

pip)
pyparsing
python-dateutil
Six

PNWNENNWRE R~ -

2.3
.9.0.post0O
1

(virtual_env) python@linux:~/skrypt$ []

~x|m

Wi

:Phk Edycja Widok Zakladki ftyczki Ustawienia Pomoc
python@linux:~/skrypt$ pip list

Package

asnilcrypto
bcc

blinker
Brlapti
Brotli
certifi
chardet
click
colorama
command-not-found
cryptography
cupshelpers
dbus-python
distlib
distro
distro-info
filelock
fuse-python

gpg
html51ib

httplib2
idna

Version

[e]
(=]

Tutaj jest podobnie. W lewym oknie rowniez aktywne
wirtualne Srodowisko (jego nazwa jest w nawiasach przed
zgtoszeniem systemowych $PROMPT), w prawym natomiast
widzimy duzo wiecej bibliotek niz w lewym, o Windows nawet
nie bede wspominat. To dlatego, ze w systemie Linux jest
wiele narzedzi, ktére sg tak naprawde skryptami Pythona, i
wymagaja roéznych bibliotek zainstalowanych w systemie, jak
rowniez Pythona od razu. Pamietamy to z pierwszego

rozdziatu.

A wiec uruchamiamy nasz program test wydajnosci.py -

mysle, ze nie musze juz pisac, jak to robimy - po prostu

wykonujemy python test wydajnosci.py w wierszu

polecen aktywnego wirtualnego srodowiska.

Zobaczmy zrzuty z systemu Windows oraz Linux.

Start testu:

MAplikacja: Program testowy
Autor: Adam Jurkiewicz
sys.version:
(AMD64)] | hexversion 51119088 | api 1013

0s.uname:

Start: 2025-08-04 14:27:10.612784
Stop: None

Delta_time: None

win32 -> 3.12.3 (tags/v3.12.3:f6650f9, Apr

(virtual _env) C:\Users\python\skrypt>python test wydajnosci.py

9 2024, 14:05:25) [MSC v.1938 64 bit

sys.version_info: sys.version_info(major=3, minor=12, micro=3, releaselevel='final', serial=e)

5 Menedzer zadas

Plic Opdje Widok

Czasy co 1000 enumeracji: {} Frocery |yt e i Dmrionis | Ueptonsioy | it | Ve
_________________ 19% 16% 1% 0% 0%
Startuje obliczanie danych: 2025-08-@4 14:27:10.628403 |~ = e N B s EE
. . .) plikagje (-
Obliczam 1000: © -> 2025-08-04 14:27:10.628403 ey e Ty gy
Obliczam 1000: 1 -> 2025-08-04 14:31:08.963643 B8 Windows Command Processor .. 2% 194MB . OIMB/A OMbis 0%
Obliczam 1000: 2 -> 2025-08-04 14:35:09.070580 Procesy w e (44)
Obliczam 1000: 3 -> 2025-08-04 14:39:08.472993 15 Al CoreSenice ox soMs owes OMbs 0% :
Obliczam 1000: 4 -> 2025-08-04 14:43:04.207366 L e I ;
[Application Frame Host 0% 26M8B OMB/s OMb/s 0% Bardzo niskie E
[COM Surrogate 0% 20M8 OMB/s OMb/s 0% Bardzo niskie E
[COM Surrogate 0% 1,1MB OMB/s OMb/s 0% Bardzo niskie E
[Device Association Framework .. 0% 3,1M8B OMB/s OMb/s 0% Bardzo niskie E
Domysiny ekran blokadly syste. [} 0% oMB 0MB/s OMb/s 0% Bardzo niskie E
Host srodowiska powtoki syste... @ 0% oMB OMB/s OMb/s 0% Bardzo niskie E
[ighCUIService Module 0% 1,0MB OMB/s OMb/s 0% Bardzo niskie E
{5 igfxEM Module 0% 38M8B oMB/s OMb/s 0% Bardzomiskie £
Wi e
2 0 vy T - AEEBY g B
[] skrypt : python — Konsola v A
Plik Edycja Widok Zakladki Wtyczki Ustawienia Pomoc
python@linux:~$ cd skrypt/
python@linux:~/skrypt$ source virtual_env/bin/activate
(virtual_env) python@linux:~/skrypt$ python test_wydajnosci.py
Start tgs‘tu : ™ Przeglad — Monitor systemowy oA X
Aplikacja: Program testowy & e o =W et 2 oauaisie
Autor: Adam Jurkiewicz ® Pasgad
sys.version: 1linux -> 3.12.3 (main, Feb 4 207 & rosem Famist Dy Fracesor
ersion 51119088 | api 1013 s e e 35568
. 5 . o . . _ . [procesy 155GiB 457,1 GiB 2%
4sys.version_info: sys.version_info(major=3, mif | . some. e el
nal', serial=0) =
. R ‘ Siec i system
os.uname: posix.uname_result(sysname='Linux',
Sieci Szybkos¢ sieci System

-26-generic', version='#26~24.04.1-Ubuntu SMP
47 UTC 2', machine='x86_64")

Start: 2025-06-15 12:45:17.843542

Stop: None

Delta_time: None

Czasy co 1000 enumeracji: {}

Startuje obliczanie danych: 2025-06-15 12:45:1

Obliczam 1000: @ -> 2025-06-15 12:45:17.843825
Obliczam 1000: 1 -> 2025-06-15 12:48:03.395581

Polaczenie przewodowe 1

lipva 192168.22.195

| fdbo:ades:8e07:0:a061:37c7:f1e3:bded | | Wysylanie

Programy
Nazwa cpu
konsole 12,4%
kem_external plasma-systemmoni.. 09%
O KDE Connect
% Discover

Pamieé ~ Pobieranie

147, MiB
75,9 MiB
25,1 Mig

22,2 MiB

Potaczenie przewodowe 1
| Pobieranie

0B/s

| Nazwa gospodarza linux

| system operacyiny Ubuntu 24.042 LTS

128B/5 | | Wersja Plazmy KDE 527.12
Wersja Szkieletéw KDE 51150
Wysylanie Odczyt Zapis
19,8 KiB/s

fe@mE

0 oA

A teraz przychodzi czas, by zaprezentowac wyniki - Windows

VS Linux....

Windows

"Aplikacja":
"Autor":

"Program

testowy",

"Adam Jurkiewicz",

"sys.version": " win32 -> 3.12.3
(tags/v3.12.3:f6650f9, Apr 9 2024, 14:05:25)
[MSC v.1938 64 bit (AMD64)] | hexversion 51119088

| api 1013",

"sys.version info": "sys.version info(major=3,
minor=12, micro=3, releaselevel='final',
serial=0)",

"os.uname": "",

"Start": "2025-08-04 14:27:10.612784",
"Stop": "2025-08-04 15:07:03.290102",
"Delta time": "0:39:52.677318",
"Czasy co 1000 enumeracji": {

"0": "0:00:00.015619",

"1000": "0:03:58.350859",

"2000": "0:07:58.457796",

"3000": "0:11:57.860209",

"4000": "0:15:53.594582",

"5000": "0:19:51.242922",

"6000": "0:23:52.493432",

"7000": "0:27:50.030732",

"8000": "0:31:56.766755",

"9000": "0:35:55.044221",

"10000": "0:39:51.937696"

}
}
Linux
{
"Aplikacja": "Program testowy",
"Autor": "Adam Jurkiewicz",

"sys.version": " linux -> 3.12.3 (main, Feb 4

2025, 14:48:35) [GCC 13.3.0] | hexversion
51119088 | api 1013",

"sys.version info": "sys.version info(major=3,
minor=12, micro=3, releaselevel='final',
serial=0)",

"0s.uname":

"posix.uname result(sysname='Linux',
nodename='linux', release='6.11.0-26-generic’',
version="'#26~24.04.1-Ubuntu SMP PREEMPT DYNAMIC
Thu Apr 17 19:20:47 UTC 2', machine='x86 64')",
"Start": "2025-06-15 12:45:17.843542",
"Stop": "2025-06-15 13:12:03.721535",
"Delta time": "0:26:45.877993",
"Czasy co 1000 enumeracji": {
"0": "0:00:00.000277",
"1000": "0:02:45.552031",
"2000": "0:05:26.502691",
"3000": "0:08:06.684872",
"4000": "0:10:46.613255",
"5000": "0:13:26.327691",
"6000": "0:16:06.305770",
"7000": "0:18:46.443818",
"8000": "0:21:26.036031",
"9000": "0:24:05.697044",
"10000": "0:26:45.398852"

Linux w niecate 30 minut, a Windows okoto 40 minut - i to jest
bardzo prawdopodobny wynik.

Doktadniej o tym teScie - a przypomne - to jest moje
subiektywne podejscie do sprawdzenia wydajnosci systemu

w jezyku Python: obliczenia, generowanie obrazkow, odczyty
| zapisy na dysku - mozemy poczyta¢ na stronie projektu:
https://github.com/Adam-Jurkiewicz-Pythonista/python-linux-
windows

A wiec ostateczny wynik:

W systemie Linux Ubuntu 24.04 LTS: "Delta time":
"0:26:45.877993"

W systemie Windows 10: "Delta time":
"0:39:52.677318"

System Linux jest ok. 35% szybszy niz
Windows w typowych zadaniach jezyka
Python na komputerze testowym.

W ten sposob nauczyliSmy sie, jak uruchamiac¢ skrypty z linii
polecen oraz czym sa wirtualne srodowiska Pythona. To
podstawowa wiedza, bez niej trudno jest zrozumiec, jak
uruchomic projekt w serwerze Linux - a przypomnijmy sobie -
wg. Sci-Tech Today 95% z miliona najpopularniejszych
serwerow WWW korzysta z Linuksa, wiecej informacji na
stronie https://www.sci-tech-today.com/stats/linux-statistics/
(ostatni dostep czerwiec 2025 roku).

Potrafimy zapisac¢ skrypt, stworzy¢ wirtualne srodowisko -
teraz czas na to, bysSmy sporo utatwili sobie prace - w koncu
programisci sg z natury leniwi i nie lubig sie przepracowywac.

Teraz do gry wkracza PyCharm.

W wersji minimum oczywiscie juz mamy go zainstalowanego
- zrobilismy to w poprzednim rozdziale. Ale w tym chce zrobi¢
kolejny krok. Naucze Cie, jak mozesz wykorzysta¢ go do
uruchamiania swoich i nie tylko swoich projektéw Pythona na
komputerze.

Jeszcze raz uruchomimy skrypt testujacy, tylko tym razem
zrobimy to wtasnie z wykorzystaniem PyCharm. Co
potrzebujemy? Kilka elementéw - przede wszystkim wiedzy o
adresie repozytorium, ktore bedziemy pobiera¢ na nasz
komputer. Zatem przypomne: https://github.com/Adam-

Jurkiewicz-Pythonista/python-linux-windows. Poza tym Git -

instalowaliSmy go w poprzednim rozdziale, wiec jesli nie
masz, przerzuc te kilka stron i zrob to.

Windows

Uruchamiamy PyCharm i w pierwszym oknie wybieramy...
Tworzymy srodowisko wirtualne, by méc uruchamiac nasz
skrypt (w koncu potrzebne beda odpowiednie biblioteki).

Linux

Uruchamiamy PyCharm i w pierwszym oknie wybieramy...
Tworzymy srodowisko wirtualne, by méc uruchamiac nasz
skrypt (w koncu potrzebne beda odpowiednie biblioteki).

Niezaleznie od systemu, tatwo zainstalujemy wszystkie
niezbedne biblioteki - mamy je opisane w pliku o nazwie
requirements.txt - zapamietajmy te nazwe - jest wazna.
W tym pliku zapisujemy po kolei nazwy bibliotek/modutéw, z
ktorych korzystamy w projekcie, o ile nie sg to standardowe

biblioteki.

W obu przypadkach na koncu uruchomimy projekt za pomocag
opcji Uruchom aktualny skrypt, i o ile wszystko jest
poprawnie, za jakis czas zobaczymy wyniki. U mnie
przedstawialy sie nastepujaco:

Wyniki skryptéw....

Mozemy zauwazyc, ze oba czasy wykonania sg dtuzsze niz
poprzednio - to wina PyCharm, ktory narzuca komputerowi
sporo zadan, by sam mogt dziata¢. Nadal Linux zachowuje
przewage w czasie wykonania w stosunku do Windows.
Jednak pamietaj - uruchamianie skryptow Pythona lub catych
projektow z poziomu PyCharm jest fatwe - ale to tylko
uruchamianie do testow, lokalne. Zaden szanujacy sie
projekt, a wiec aplikacja komercyjna czy open source, nie
wykorzystuje PyCharm czy innego IDE do uruchamiania!
Robi to w zupetnie inny sposéb - dojdziemy do niego w
rozdziale 8.

Tworzenie wtasnhego, howego projektu.

Teraz nadchodzi moment, kiedy musimy utworzy¢ nasz
projekt. Zaproponuje nastepujaca kolejnosc:

Tworzymy puste repozytorium w serwisie GitHub

Pobieramy (ang. clone repository) je na nasz
komputer

Kreujemy lokalne srodowisko wirtualne
Tworzymy wszystkie dodatkowe pliki na dysku

Dodajemy je do naszego repozytorium (ang. add)
Aktualizujemy nasze repozytorium (ang. commit/push)

To niby takie proste, ale jak sie za chwile okaze, czekac na
nasz statek i na nas bedzie sporo raf koralowych, ktore -
mam nadzieje - szczesliwie ominiemy.

Wiem, to ksigzka dla technika programisty, a nie zeglarza czy
obiezyswiata, lecz mam nadzieje, ze takie wstawki skutecznie
zredukujg poziom stresu.

Zatem w serwisie GitHub zakladamy repozytorium, nazwijmy
je np. my weather 00 (dlaczego 00 ? mam nadzieje, ze juz
wiesz... w Pythonie... itd.)

https://github.com/Adam-Jurkiewicz-

Pythonista/my_weather_00

Pamietamy o .gitignore - waznym pliku, ktéry informuje
Git, ktorych plikéw nalezy omijac¢, a wiec ignorowac je.
Dodajemy te Licence , informujemy wszystkich, jakg licencje
zastosowalismy do naszego projektu. Ja projekty
OpenSource (a wiec te, ktére robie pro publico bono)
opatruje Licencjg MIT, ktora pozwala na:

X

XX

Na koncu zaznaczamy, by GitHub stworzyt tez plik Readme ,
w ktorym znajda sie na koncu rozdziatu 6 wazne informacje,
ktore potem w rozdziale 8 jeszcze zaktualizujemy.

Teraz mozemy w PyCharm skopiowac to repozytorium na
nasz dysk. Tutaj w zaleznosci od systemu przyjmiemy rozne
strategie.

[tutaj klonowanie windows/linux]

Po klonowaniu musimy réwniez skonfigurowac srodowisko
wirtualne (ang. virtual environment), by moc uruchamiac
lokalnie kod i sprawdzac¢ nasze zmieny.

Gdy mamy juz pliki z repozytorium na dysku, musimy
nauczyc¢ sie, jak dodawac nowe, modyfikowac istniejace, a na
koniec dnia, jak efekty naszej pracy odsyta¢ na serwer, czyli
do repozytorium GitHub - by mogty by¢ wykorzystane w
naszym projekcie, kiedy juz wdrozymy w peini dziatajacy
mechanizm CI/CD.

Aby utworzyC nowy plik, po prostu wykorzystujemy funkcje
Nowy/Python script ; mam nadzieje, ze nie musze
doktadnie ttumaczyc¢, jak zmienia¢ (modyfikowac) juz
istniejace pliki.

Dodamy nowy plik 0 nazwie skrypt pomocniczy.py w
katalogu gtdwnym

